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Further developing the results obtained in [l], where the asymptotic form of the one-dimensional 

expansion of an ideal gas with adiabatic index L > 1 was investigated, the features of the unsteady 

expansion of an ideal gas (non-viscous and non-heat-conducting) into a vacuum are investigated. If I is 

the time and x is a coordinate measured from the plane, axis or centre of symmetry, the formulas 

obtained in [l], which take into account the effect of the vanishing pressure on the inertial expansion of 

the gas, hold in the region of the plane XI, elongated in the direction of the t axis. The approach used 

below is free from this limitation, and the relations obtained hold everywhere far from the origin of 

coordinates. In addition to this, asymptotic formulae are obtained which describe the spherically 

symmetric inertial expansion of a gravitating gas, and an asymptotic analysis is carried out for an ideal 

gas with K = 1. The corrections for gravitation, like the formulae for the inertial expansion of a gas into 

a vacuum, are independent of its thermodynamic properties. The results obtained hold for times I for 

which, as a result of the expansion, the volume occupied by the gas considerably exceeds its initial 

value. 

Like [l], the present investigation is related to the work described in [2-91 on steady hypersonic 
flows, where the inertial expansion of a gas was analysed [2-71 and corrections were obtained 
due to the vanishing pressure [8,9]. 

l. Suppose u is the velocity, p and p are the pressure and the density, and T, h and s are the 
temperature, the specific enthalpy and the specific entropy of the gas, which are known 
functions of p and p. Then the flow of an ideal gas is described by the equations [lo] 

d”+Ivp=o, 4 
dt P 

dr+pvu=o, ds -0 

z- 

$+Vh-TVs=0 ($=$+uV) 

(1.1) 

the fourth of which is a consequence of the first and the equation Tds = dh - p-‘dp. 
When t =0 the gas occupies the volume Q, with surface a&2,,, which separates it from the 

surrounding empty space. We will take the length L,,, characterizing the dimensions of Q, as 
the spatial scale. When Q, has a plane or axis of symmetry, &, is the distance from them to 
&&The surface an can be purely geometrical or a shell which disappears at the instant t = 0. 
In any case, the initial distributions of the parameters, to which we will ascribe the subscript 
“zero”, are arbitrary for zero total momentum of the gas (due to the choice of the system of 
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coordinates). It is assumed that there are no external forces when t > 0 and that the origin of 
coordinates coincides with the centre of mass of the gas. 

For arbitrary 11, the expanding gas may decompose into several unconnected “clouds”. The 
less “exotic” initial conditions (for example, p0 = const, u0 = 0) ensure that the expanding gas 
evolves as a connected whole. In general, the rate of discharge into the vacuum is different at 
different points of &&,. The maximum value rdm of its component normal to X& will be taken 
as the scale of U, &/u”’ will be taken as the scale of t, and the constant c, with the dimensions 
of specific heat capacity will be taken as the scale of s. Then, the last equation of (1.1) becomes 

du+Vh_ 5zVs=0 
dt urn2 urn2 (14 

The initial fields of the parameters may contain jumps or lead to the formation of such. If the 
jumps arise due to energy release when f < 0, we will take as the origin of the coordinate of t 
the instant it arrives at the furthest point of XI,. In any case, however, the rarefaction waves 
due to the expansion of the gas into the vacuum will, finally, lead to the disappearance of the 
jumps and to the termination of the increase in s. Hence, due to the increase in the dimensions 
L of the region il, which, for the chosen scale of II, increases, like t, for large t we will have 
Vs = 0(1/t). For the same reason the change in u (within R when t = const) and the velocity 
itself are quantities of the order of unity and, consequently, (uV)u = 0(1/t). On the other hand, 
after the jumps disappear, h/zP” will approach zero everywhere in R as t increases and 
V(hlum2) =0(1/t). Due to the reduction in T the same holds for the third term in (1.2). Thus, in 
(1.2) the second and third terms are of the order of o (l/t), while (uV)u= 0(1/t). Hence 
&lilt = 0(1/t), and for large values of E (1.2) reduces in the “principal orders” to the equation 
of the inertial expansion 

du/dt = 0 (l-3) 

According to (1.3) the velocity u does not change along the trajectories of the gas particles. 
For even larger t the trajectories are rays: r = M with radius-vector II drawn from the origin of 
coordinates. Hence, by obtaining Vu = 3/t, after substitution into the second equation of (1.1) 
we obtain that along the trajectories of the particles 

p = p j(tihY (l-4) 

In (1.4) i= 3, and f, is such that when f a t, in R Eq. (1.2) reduces in “principal orders” to 
(l-3), while in the equations of the trajectories: r = et the neglected terms are small compared 
with r. the density pi in (1.4) varies from particle to particle. According to the third equation of 
(1.1) along the trajectory when t 2 fj 

For an ideal gas we have from (1.4) and (1.5) 

p = pi(ti/t)‘” P-9 

Suppose that when there is a centre, axis or plane of symmetry, u is the x-component of u (in 
the spherically symmetric case the other components of u are zero). Then, when t 3 tj 

u = x/t (1.7) 

and, by virtue of the second equation of (l.l), written taking the corresponding symmetry into 
account, in (1.4) and (1.6) i= l+v with v= 0, 1 and 2 in the plane, cylindrical and spherical 
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cases. Since when v = 0 and 1 the gas, due to symmetry, does not expand in all directions, in 
these cases as t increases p falls more slowly than for a spherical and arbitrary spatial 
expansion. 

When there is initial swirling when v = 1 the angular momentum y = xu is conserved in the particle, 

where u is the circular component of u, i.e. along the trajectories of the particles u = y/x = y(ur), and as t 
increases this component falls as l/r, and the term u2/x which occurs in the equation for II, decreases as 
l/P. Consequently, here also for sufficiently large t 2 t, in the “principal orders” u is described by the 
equation of inertial expansion (1.3) with II replaced by u. 

2. In the one-dimensional case when t+t, the volume ni is represented by a point, and in 
view of the fact that there is no characteristic linear dimension it is natural to attempt to 
construct a self-similar solution of the equations defining u and p. For such t, from the mass m 
and the energy E of the expanding gas, defining the parameters of the problem which affect u 
and p, we form the quantity c = d(Elm) with the dimensions of velocity. Then, using the well- 
known ideas of the theory of dimensions [ll], we can write u and p in the form 

(2-l) 

Substituting (2.1) into (1.3) and into the second equation of (1.1) we arrive at the following 
system (the prime denotes a derivative with respect to 5) 

(u-5)(/‘=& ((I-&R’=(l +v-U’-VU&R (2.2) 

The first equation has two solutions: U’= 0 and 

u=c (2.3) 

If U’= 0, we have U(c) = const. By virtue of the condition of symmetry U(0) = 0, whence we 
have U(k) "0, which does not describe expansion into a vacuum. The situation is also not 
saved by assuming a vacuum in the neighbourhood of c = 0, since then the unique acceptable 
solution of the second equation from (2.2) is R(t) = 0. There remains the solution (2.3), which 
is identical with (1.7). Here, however, in the second equation of (2.2) the factors in front of R’ 

and R vanish. Hence, R(c) is an arbitrary function which satisfies the integral laws of 
conservation of mass and energy. If 5”’ is the maximum value of 5, which defines the motion of 
the boundary JR, then, taking (2.1) into account and the fact that c* = Elm, they have the 
form 

‘; SVR(Qdc = 1, ‘; t,*+“R(t,) = 2 (2.4) 
0 0 

In the approximation considered, Eq. (1.7) for u does not contain p, and when v = 1 also y = xu, which 

would also lead to a self-similar solution of (2.1). Taking p into account the three equations of one- 
dimensional flow would have to be solved together, taking into account the specific form of s(p, p). 
Thus, for an ideal gas s = s,, + c, ln[pl(kp”)] with dimensional constants s,,, c, and k. When K # 1, from k, 

m, E, x and t we can set up a dimensionless variable which differs from 5, which makes the problem a non- 
self-similar one. 

In approximation (1.7) not only is a self-similar solution obtained for u and p, but the definition of the 
other variables is also simplified. The entropy, and for v = 1, y also, according to the accurate equations 

dsldt = 0, dyldt = 0 (2.5) 

are conserved along the trajectories of the particles. In this approximation the trajectories are straight 
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lines E, = const and we have from (2.5) 

The functions S(c) and y(t) that occur here, like R(k), are not found from the self-similar equations, 
where the second equation of (2.6) unlike the first, within the framework of the dimensional analysis, 
generally cannot be obtained from (2.5). In fact, substituting s(x, t)=c,S({) and y(x, t)=c’tT(Q into 
(2.5) we obtain the equations 

(I/-QS’=O, (CJ-QT’+l-=o 

Hence it follows that for U =k the function S(c) is arbitrary, while r(c)= 0. Although the equation 
r(c)=0 contradicts the integral y= r(c), which follows from (2.5) with an arbitrary function r(c), this 

contradiction, however, is apparent. When t 9 t,, when x, s L,eL - ct, we have r(c) = yl(c*t) - xi IL = 0, 

because in the scale L - ct the initial dimensions of L, become a point and it makes no sense to speak of 

swirling that differs from zero. If we take CL, as the scale of y, then putting y(x, t) = cL,T(s), to determine 

the function r( E,) of the order of unity we arrive at the same equation as for S, and at the second equality 

of (2.6). 
Similar features occur if we determine p from the first equation of (2.6). For an ideal gas this gives 

p(x,t)= mK 
(Ct)wV)K WCA GJ = UiJR(5)l" (2.7) 

with the dimensional entropy function k(c) = p,p;“. F or f ree expansion of a uniform gas initially at rest 

k(e) = const. If we forget the fact that a gas expanding “from a point” when t+t, “remembers” the initial 
entropy distribution, which affects the self-similar solution of (2.6) or (2.7) in terms of the scale for p, then 

from an analysis of the dimensions, instead of (2.6) and (2.7), we obtain 

2 
p(x,O= A P(S) 

(c&“) 
(2.8) 

Substituting (2.1) and (2.8) into the first equation of (2.5) rewritten in the form dppldt = a2dpldt, where 
a is the velocity of sound, we obtain for an ideal gas 

((I - {)Rp’ - K(CI - E,)PR’ + (1 + V)(K - 1)RP = 0 

Hence, by virtue of (2.3) we have P(c) E 0. Since, by (2.1) and (2.8) 

p _ c2 (ct)(‘+“)(K-‘) P(S) -_ 
PIc WE’-’ [W31K 

then P(c) = 0 provides the unique possibility of conserving pp-’ along the trajectories of the particles. As 

in the situation when r(t) = 0 the solution (2.8) with P(c) = 0, obtained by standard dimensional analysis, 
is the result of the unfortunate scaling of p. Its natural scale, leading to non-trivial solutions of (2.6) and 
(2.7) is related to the entropy “remembered” by the gas. 

The presence in the self-similar solution (2.1) (2.3) and (2.6) of the arbitrary functions R(c), S(c), k(c) 
and r(k) reflects the prehistory of the expansion of the gas when t < t,. It is then, in accordance with the 

initial conditions when t = 0 in R,e Ri that the processes described by the complete equations (1.1) and 
the relations on the discontinuities, form density, entropy and swirling fields defining these functions 
before t = t,. The same initial conditions and processes also define the value of em, and, in the case when a 
vacuum is formed in the neighbourhood of the t axis, the minimum non-zero value of 5. 

The effect of the initial non-self-similar conditions on the self-similar solution described above recalls 
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problems with “incomplete self-similarity” [12], but which nevertheless differ in principle from the 

examples considered in [12]. The structure of the required solution above, as in [ll], is found by analysing 

the dimensions and by the simplest integrals of the flow equations. 

3. In the asymptotic formulas of the first approximation from Sections 1 and 2, the 
expressions for u, u, p and u are universal-they do not depend on the equation of state. 
Formulae (1.6), (2.6) and (2.7) for p are not universal in any approximation. Since to refine the 
formulae obtained we must take p into account in the equation of motion, the result of such a 
refinement depends on the thermodynamics of the gas. By confining ourselves to the one- 
dimensional case, we initially obtain the required asymptotic expressions for an ideal gas with 
K> 1. We start by refining (2.3) for the velocity. Then we obtain the deviation of the 
trajectories from straight lines: x = &t with U = 5 = const and we investigate how this affects 
the asymptotic formulae for p and p. 

There are two reasons for the errors of formula (2.3): U = 5. First, the distribution of U = UIc 
when t = ti, even for particles which move with constant velocity, deviates from U = 5, i.e. from 
the self-similar solution (2.3) on S(g), although in the inertial expansion mode 6 + 0 as t, + m. 
When c?@,) f 0 and for finite t,, even if Eq. (1.3) is accurate for t Z= ti the trajectories of the 
particles will not be rays: x = E,ct, emerging from the origin of coordinates, but straight lines 

X = Xi + (ti + 6i)C(f - fi) (3.1) 

which intersect the t axis at different points. In (3.1) and henceforth gi = s(&) and by definition 
6(O) = 0. Along the trajectories, by virtue of (1.3), as before U = const, but now, unlike (2.3) 

(3.2) 

Second, in (1.3) we have omitted terms proportional to $/ax, and when v = 1 terms 
proportional to V’ also. After a long time interval they may change the form of the trajectories. 
In the approximation considered, both effects can be taken into account separately and then 
summed. The effect of gi + 0 is expressed by (3.1) and (3.2). We will now take into account the 
effect of ap/&. The exact “predecessor” of Eq. (1.3) has the form 

du 1 t3p vu2 
-+---v(2-v)-=0 
dt pax X 

We find the second term in (3.3) from the “first approximation” 

1 ap me=- Fol_ nPP’({) 
P ax (cty+’ (#+I R(c) ’ 

n = (l+ V)(K - 1) 

(3.3) 

(3.4) 

and we omit the third. Since u’/x= yzIx3 = y’(l$t)-‘, by virtue of this for v = 1 the last 
formulae hold either for y = 0 and any K > 1, or for y -+ 0 but KC 2, when the third term in 
(3.3) is much less than the second. 

Putting u=&+cAU(x, t), after substituting (3.4) and this expression into (3.3) and 
neglecting terms that are quadratic in AU, we obtain the equation 

aAu 
-+&-- - aAu+lAU - F(5) 

at ax t (cty+' 
(3.5) 

Its solution, by what was said above, must satisfy the conditions 

AU(0, t) = AU(X, ti) = 0 (3.6) 
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Applying separation of variables to (3.5) and (3.6) and taking into account the fact that, by 
virtue of symmetry F(O) -P’(O) = 0, we obtain after simple algebra 

AU = z(t)cp({), z(f) = [Wet) - cP~cfj>lHcf) (3.7) 

In the “first approximation” along the trajectories 5 = con& Due to the correction (3.7) to 
the velocity this property is now not satisfied even when gi = 0 and 5 = ci + A& where by defini- 
tion A&&, ti) =O. To obtain At we will use the fact that along the trajectories dxldt = u= 
c(t+ AU) with AU from (3.7) and the fact that 5 = xl(ct). Differentiating the last equation and 
omitting the product @A$, which is small in this approximation, we obtain the equation 

Integrating this with the condition A@,,, ti) = 0 we obtain 

+ Xtcf > - XCcri )I 

X(Z) = 
1 / [n(n - l).?] when n f 1 

-(l+Inz)/z when n=l 

Substituting (3.7) and (3.8) into the equation of the trajectory 

dX/dt = i/(5,, t) = 6 + AU = E,i + At + AU 

dropping the quadratic terms and carrying out the integration, we obtain 

x=.q+[&.+ qi -]C(f-Zi)+(Pj[A(Cf)-A(cti)] 
n( C'i )” 

(3.8) 

(33.9) 

‘+ / [n(n - l)] when n f 1 

-1nz when n=l 

combining (3.2) with (3.7) and (3.1) with (3.9) and neglecting small ~gher-order terms we 
obtain the following asymptotic formulae of the “second approximation” 

U(Si,?) = ki + 6i + $7~&] 
X(~;,t)=xi+ &+&+A 

[ n(q)” 1 
C(t-fi)+~iiA(Cf)-A(Cfi)]= 

a.=i+6,+ % 
I 

5i Sintcti)” ’ 
1r 

UI=Ul(r,fi)=~ A(ct)-A(cti)- 
1 

1 

n(cti)“-’ I 

(3.10) 
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In (3.10) the second expression for x differs from the first in terms that are quadratic in & 
and cpi. 

When n > 0, which corresponds to K > 1, the correction to the velocity of the particles at the 
stage of the expansion of the gas connected with ap/& f 0, according to (3.10), remains small 
for all t > ti, increasing monotonically (in modulus) from zero when t = ri to I cpi Il[n(ct,)“] as 
I + 00. Despite this, the trajectories of the particles may differ as much as we please not only 
from the rays x = E,,ct, but also from rectilinear trajectories of inertial motion of the particles 
(3.1). As can be seen from (3.10) this occurs if IZ al or, by the definition of n, if KS K, = 
l+l/(l+v). When K G K, in the formula for x from (3.10) the term proportional to A(ct), 
increases without limit as I increases, although more slowly than &ct. This result agrees with 
the conclusion reached in [l], with the sole difference that the analysis in [l] only holds in the 
region of the ti plane, extended along the z axis. It can be shown that at the boundary of the 
expanding gas with the vacuum cpi =O. Hence, the limiting trajectory, like the trajectory of the 
particle, which is at rest when x = 0, is rectilinear for any K. 

The Lagrangian form of writing the solution in the form (3.10) easily enables us to obtain the 
required formula for p. In fact, the connection between p at an arbitrary point of the trajectory 
and pi = p(x,, ti) can be written, by virtue of the equation of continuity, in the form [13] 

(1 ” ax 
pJ=p,, J= ; - 

1 axi 

(3.11) 

where J is the Jacobian of the transformation for the one-dimensional case considered. With 
the same accuracy as above we obtain from (3.10) 

Here, as earlier, the primes denote derivatives with respect to &, 
Substituting (3.10) and (3.12) into (3.13) we obtain 

p(&,r)=JL ‘i 
I+” 

0 ( olypi r 

&+cpiy -” -1 

tit Si I( 1-gi!+cp)u’ 
) 

(3.12) 

(3.13) 

For small values of &, for which 6, /&- 61, ~p~/E,~=cpl and pi = a, (3.13) reduces to the 
corresponding formula from [l]. 

For t 2 r, along each trajectory defined by a fixed value of &, in any approximation the 
entropy function K(&) =pIpK is conserved. As a result of this p(ci, t) =k(&)p” with p(&, t) 
from (3.13). 

This approach holds provided all the corrections to the asymptotic formulae of the first approximation 
are small. If II >O, this requirement can always be satisfied by choosing 1, to be sufficiently large. 
According (3.10) it should be such that 

lSilegj7 I~ile”(cri)n~i (3.14) 

By satisfying (3.14) we ensure that the corresponding perturbations are relatively small, including the 

ratios (to ~&cl) which increase without limit for 1 <K < K, and the deviations of the trajectories from rays 
x = c,ct. 

4. If jr = 0, i.e. 5 = 1, the second inequality in (3.14) which now cannot be satisfied because of the choice 

of t,, gives cp, E (p&)=0. This means that as K + 1 at the stage of expansion (if it is realized) the 
trajectories of the particles are straight lines not only in the first but also in the second approximation. 
Since, however, in this case 14~ and c are infinite, while above we assumed c to be finite, then, although 
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the same result formally follows from (3.4) and (3.7) as c-_) - a passage to the limit as K -+ 1 is 
fundamentally required. This can be done in several ways. 

We will rewrite the equation Tds = dh - p”dp for an ideal gas in the form 

(4.1) 

and we will consider the problem of piston which, for t > 0, expands at a constant velocity c, which we will 

take as the scale of u. Later we will let c approach infinity. Since for a gas with K = 1 the rate of expansion 
into a vacuum is infinite, for any c G Q) the gas will not lag behind the piston, and for c < 00 the density 
will be non-zero. Substituting (4.1) with ~=l into (3.3) without u2/x and using the same method of 

changing to dimensionless form as when obtaining (1.2) we have 

(4.2) 

When K = 1, a is a function of s only. Hence, after the shock waves die away (if these arise when t c ti) 

a*, together with s, is conserved in a particle, i.e. it does not decrease as it does when K > 1. Despite this, 
when estimating “orders of magnitude” the term with a2 when t ati and large values of t becomes much 
less than u(au/ax). This justifies the procedure of the solution used above and formulae (2.1) (2.3) (3.1) 

(3.2) and (3.7). In (3.7) (p(e) must now be understood to be 

(4.3) 

where, in general, a like R and S, is a function of 5. Proceeding further in the same way as in Section 3, we 

obtain the expressions 

X(S;,t)=Xi+(5i+6i-(Pi)C(t-ti)+(PiCtIn(t/ti) (4.4) 

which, unlike when determining (p,, are identical with the limit (3.10) as IZ + 0. 

These expressions do not give solutions of the piston problem considered since when 5, = cf the non- 

flow condition U(EJ, t)= l, due to the last term in the first equation of (4.4) for t > t,, is satisfied with an 

error of the order of (pi. We will not, however, introduce the corresponding corrections into (4.4) since in 

the limit (4.4) of interest to us for fixed t and c + m these corrections, by (4.3), disappear together with 

cp* +O. 
Passing to the desired limit, we will make the natural assumption that the finite function 

F_(k) = limF(@ exists as c + - and 0 c 5 G 1 and we will change from 5 and U to 5” = x/(c”t) = (c/c’ and 
U” = u/c0 = &/co. Here, unlike when c -+ =, the constant co with the dimensions of velocity is finite. It is 

convenient to take as co the value a =a”’ when t= ti. If the parameters of the gas are constant and u0 =O 
when t = 0, then in the limit as c + ml which clearly corresponds to shock-free expansion into a vacuum, 

am = a,,. Finally, as c + m, instead of (4.4) and (3.13) we obtain 

u”({p,t,=g +s;, X(5p,t)=Xi +(51+69)C’(t_ti) 

p(5;J) = __&_(L~+v(l-$$J-pL~ (4.5) 

Cti =l+S~/(y, pi =I+&: 

which confirms the conclusions reached purely formally at the beginning of this section. 
As t, increases the correction 6: = U;-- 59 + 0 and the formula for p when t Z+ t, becomes (1.4) with 

j = 1+ v. On the other hand, if we replace c by co and R(c) by R’(v) in expression (2.1) for p, we obtain 
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0 l+v 

R’({‘)= lim R(g) 0 5 =o 
c-b- (4.6) 

and, consequently, p 3 0 when t > t,. Although the stage of inertial expansion of the gas, for which (4.5) 
hold, assumes that p is small, the expression for p from (1.4) with j = l+ v and (4.5) are more pithy than 
the identity p I 0. As has already been pointed out, R(c) f 0 and P(c) # 0 are the result of the gas 

“remembering” the non-self-similar stage of expansion. 
According to Section 2, when K = 1 we can compile from x, t, m, E and the entropy function p. lp = ai a 

unique independent dimensionless combination: 5” = x/(a,t). Recalling the observation made above 
regarding R(c) and P(k), we will now use the fact that, for large t, when the initial volume is represented 

by a point, of the defining parameters the constants m, E and a, remain. Then, the problem of a piston 

with a constant piston velocity c and its limit as c + - is the problem of the expansion of a gas with K = 1 

into a vacuum and will also be self-similar. 
In the problem of a piston, putting 

u(x,t) = q,U”(5°), p(x,r) = &R’&, 
(aot) 

5’ = -$ (4.7) 

to determine U’(v) and I?‘(~) when 0 G 5 o < c/a, from the second equation of (1.1) and from (4.2) with 
s I const we obtain 

(U” -~“)Ro’-(l+~-Uo~-~Uo l~‘)k?* -0 (4.8) 

Here, unlike the previous analysis, in the second equation we retain ap/&x=a:(ap/dx). By (4.7) we 
must solve system (4.8) with the conditions 

U”(O)=O, U”(clag)=clag (4.10) 

Substituting R”‘/RO from (4.9) into (4.8) and introducing 
following equation for determining W 

w’ = sow2 -VW 

5’(l-W2) 

the notation W = V-5” we arrive at the 

(4.11) 

the solution of which, by virtue of (4.10), must satisfy the conditions W(O)= W(cla,)=O. A unique 
solution of Eq. (4.11) which satisfies these conditions is W = 0, i.e. U”@,“)=~. Hence we also have from 
(4.9) R”’ = 0, and, consequently, R”(k) I R”(O) = Rt. We obtain the constant R,, from the rewritten integral 
condition of conservation of mass, taking (4.7) into account, namely, the first equation of (2.4) 

R,o = (l+ v)EI+~, where E = a, /c. Hence in the limit as c + 00, which corresponds to the expansion of a gas 
with K = 1, into a vacuum, we will have 

u” =g, R’rO, Oa~“soo (4.12) 

The second integral condition (2.4) in the problem of a piston is not satisfied, since the gas does work 
and its energy is not conserved. If this condition is rewritten taking into account the method used to 

change to dimensionless quantities and the fact that in the case investigated h = h, +a: ln(p/p,), we obtain 
from it for the work A done by the gas 
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This formula can be used beginning from those values of t, and, consequently, p also, for which the flow 
is fairly close to that for the self-similar solution with R”(E,) = const z 0. 

In deriving (4.9) we assumed that se so I const.This is certainly true in the limiting case when c = m. 

Hence, applying the solution obtained above with R”(Q=const directly to this case and taking into 

account that on the “boundary” (when 5” = -) the density vanishes, we immediately obtain (4.12). It is 
true that with this approach the result obtained can be shown to be strange, as the boundary SC& transfers 

instantaneously to infinity. But a gas with K = 1 really does. 
As we have already noted, the relation between R”(c) and R(k) as c+- is given by (4.6) which 

shows that the corresponding representations are not contradictory. As regards the problem of a piston 
with CC=, the self-similar solution (4.7) with R”(k)” q (l+v)~~“, which “forgets” the initial non-self - 
similar stage, is less accurate and pithy than the self-similar solution which also describes the dispersion of 

a gas as regards the rate of solution of the “first approximation” (2.1) and the non-self-similar solution of 

the “second approximation” (4.5). 

5. The approach used in Section 3, enables us to take into account the effect of gravitation on 
the spherically symmetrical dispersion of a gas. The equation of motion in this case has the 
form [ll, 141 

(5.1) 

where G is the gravitational constant. 
If, despite the presence of gravitation, the gas expands, then, in the first approximation, the 

third term in (5.1) can be neglected, and we then proceed in the same way as in Section 3. As a 
result, instead of (3.10) and (3.13) we obtain 

X(Si,t)=Xi + 
[ 
5i +6i+ ‘pi -+~ C(t-ti)+cpi[A(Ct)-h(Cri)]- 

n(cri)” l  1 

[ 

6.t. cp. f. -Jlnl=xiaif l-A+ly-L 

r i ri 5ir Si OZitiCt ( I 
l+lnL 

ti 

t. I+” 
-V 

f&t) = pi L 

0 [ 
(xypi f 

1 6ifi +‘p’yl_ f, 

5if 5i a&t 
( I l+Inf x 

‘i 

[ ‘C I 

-I 

)( 1_.6)3+(p;y-A- 
Picf 

l+lnf- 
?i 

(5.2) 

Here 6, cp, V and Y are the same as in (3.10), f; = f(&), while the primes, as before, denote 
derivatives with respect to ei. The formulae of the “second approximation”, which describe 
the dispersion of a gravitating gas with K = 1, can be obtained from (5.2) with c -+ m and do 
not differ from (4.5). The question of whether one can obtain almost inertial expansion in a 
gravitating gas is determined by the evolution of the flow at its initial stage [ll, 141. 
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